Structure and interactions of NCAM Ig1-2-3 suggest a novel zipper mechanism for homophilic adhesion.

نویسندگان

  • Vladislav Soroka
  • Kateryna Kolkova
  • Jette S Kastrup
  • Kay Diederichs
  • Jason Breed
  • Vladislav V Kiselyov
  • Flemming M Poulsen
  • Ingrid K Larsen
  • Wolfram Welte
  • Vladimir Berezin
  • Elisabeth Bock
  • Christina Kasper
چکیده

The neural cell adhesion molecule, NCAM, mediates Ca(2+)-independent cell-cell and cell-substratum adhesion via homophilic (NCAM-NCAM) and heterophilic (NCAM-non-NCAM molecules) binding. NCAM plays a key role in neural development, regeneration, and synaptic plasticity, including learning and memory consolidation. The crystal structure of a fragment comprising the three N-terminal Ig modules of rat NCAM has been determined to 2.0 A resolution. Based on crystallographic data and biological experiments we present a novel model for NCAM homophilic binding. The Ig1 and Ig2 modules mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), whereas the Ig3 module mediates interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions) through simultaneous binding to the Ig1 and Ig2 modules. This arrangement results in two perpendicular zippers forming a double zipper-like NCAM adhesion complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular basis of sidekick-mediated cell-cell adhesion and specificity

Sidekick (Sdk) 1 and 2 are related immunoglobulin superfamily cell adhesion proteins required for appropriate synaptic connections between specific subtypes of retinal neurons. Sdks mediate cell-cell adhesion with homophilic specificity that underlies their neuronal targeting function. Here we report crystal structures of Sdk1 and Sdk2 ectodomain regions, revealing similar homodimers mediated b...

متن کامل

The Crystal Structure of the Ligand Binding Module of Axonin-1/TAG-1 Suggests a Zipper Mechanism for Neural Cell Adhesion

We have determined the crystal structure of the ligand binding fragment of the neural cell adhesion molecule axonin-1/TAG-1 comprising the first four immunoglobulin (Ig) domains. The overall structure of axonin-1(Ig1-4) is U-shaped due to contacts between domains 1 and 4 and domains 2 and 3. In the crystals, these molecules are aligned in a string with adjacent molecules oriented in an anti-par...

متن کامل

The crystal structure of the ligand-binding module of human TAG-1 suggests a new mode of homophilic interaction.

Human TAG-1 is a neural cell adhesion molecule that is crucial for the development of the nervous system during embryogenesis. It consists of six immunoglobulin-like and four fibronectin III-like domains and is anchored to the membrane by glycosylphosphatidylinositol. Herein we present the crystal structure of the four N-terminal immunoglobulin-like domains of TAG-1 (TAG-1(Ig1-4)), known to be ...

متن کامل

Molecular mechanisms of NCAM function.

Neural cell adhesion molecule (NCAM) was originally characterised as a homophilic cell adhesion molecule (CAM) abundantly expressed in the nervous system. However, the last decade of research has challenged the traditional view and defined novel roles for NCAM. NCAM is now considered a signaling receptor that responds to both homophilic and heterophilic cues, as well as a mediator of cell-cell ...

متن کامل

Identification of a peptide sequence involved in homophilic binding in the neural cell adhesion molecule NCAM

The neural cell adhesion molecule NCAM is capable of mediating cell-cell adhesion via homophilic interactions. In this study, three strategies have been combined to identify regions of NCAM that participate directly in NCAM-NCAM binding: analysis of domain deletion mutations, mapping of epitopes of monoclonal antibodies, and use of synthetic peptides to inhibit NCAM activity. Studies on L cells...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Structure

دوره 11 10  شماره 

صفحات  -

تاریخ انتشار 2003